MathNet.Numerics 4.0.0-alpha04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5

Prerelease to test .Net Standard support and establish dotnet SDK build automation Assembly code signing (X.509) using SHA2 (256) BUG: Ode Solver: fix typo in the Runge-Kutta solvers on time-step handling BUG: Matrix.GetHashCode for wide matrices ~mjmckp

.NET Framework 4.0

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 4 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 5 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 3 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 5 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 4 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 3 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 3 11/19/2024
4.12.0 4 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 3 11/19/2024
4.8.0 3 11/19/2024
4.8.0-beta02 4 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 3 11/19/2024
4.5.1 3 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 3 11/19/2024
4.3.0 3 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 3 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 5 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 3 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 2 11/19/2024
3.20.2 3 11/19/2024
3.20.1 4 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 4 11/19/2024
3.19.0 3 11/19/2024
3.18.0 2 11/19/2024
3.17.0 3 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 4 11/19/2024
3.14.0-beta01 5 11/19/2024
3.13.1 3 11/19/2024
3.13.0 2 11/19/2024
3.12.0 3 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 3 11/19/2024
3.7.0 2 11/19/2024
3.6.0 3 11/19/2024
3.5.0 3 11/19/2024
3.4.0 2 11/19/2024
3.3.0 3 11/19/2024
3.3.0-beta2 4 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 5 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 3 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 3 11/19/2024
3.0.0-beta05 4 11/19/2024
3.0.0-beta04 5 11/19/2024
3.0.0-beta03 4 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 4 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 3 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 3 11/19/2024
2.5.0 3 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 3 11/19/2024
2.1.2 3 11/19/2024
2.1.1 3 11/19/2024