MathNet.Numerics 3.0.0-alpha7

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Numerics is the result of merging dnAnalytics with Math.NET Iridium and is intended to replace both. Also includes portable builds for profiles 47 and 126 supporting .Net 4 and higher, SL5, WP8 and .NET for Windows Store apps.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
10
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
6
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
2

This package has no dependencies.

Version Downloads Last updated
6.0.0-beta1 8 11/17/2024
5.0.0 7 11/19/2024
5.0.0-beta02 7 11/19/2024
5.0.0-beta01 10 11/19/2024
5.0.0-alpha16 9 11/19/2024
5.0.0-alpha15 7 11/19/2024
5.0.0-alpha14 8 11/19/2024
5.0.0-alpha13 7 11/19/2024
5.0.0-alpha12 5 11/19/2024
5.0.0-alpha11 7 11/19/2024
5.0.0-alpha10 5 11/19/2024
5.0.0-alpha09 7 11/19/2024
5.0.0-alpha08 6 11/19/2024
5.0.0-alpha07 9 11/19/2024
5.0.0-alpha06 6 11/19/2024
5.0.0-alpha05 6 11/19/2024
5.0.0-alpha04 8 11/19/2024
5.0.0-alpha03 7 11/19/2024
5.0.0-alpha02 7 11/19/2024
5.0.0-alpha01 7 11/19/2024
4.15.0 6 11/19/2024
4.14.0 6 11/19/2024
4.13.0 7 11/19/2024
4.12.0 7 11/19/2024
4.11.0 7 11/19/2024
4.10.0 8 11/19/2024
4.9.1 5 11/19/2024
4.9.0 7 11/19/2024
4.8.1 7 11/19/2024
4.8.0 6 11/19/2024
4.8.0-beta02 8 11/19/2024
4.8.0-beta01 8 11/19/2024
4.7.0 7 11/19/2024
4.6.0 6 11/19/2024
4.5.1 6 11/19/2024
4.5.0 6 11/19/2024
4.4.1 6 11/19/2024
4.4.0 6 11/19/2024
4.3.0 6 11/19/2024
4.2.0 8 11/19/2024
4.1.0 6 11/19/2024
4.0.0 6 11/19/2024
4.0.0-beta07 7 11/19/2024
4.0.0-beta06 12 11/19/2024
4.0.0-beta05 9 11/19/2024
4.0.0-beta04 10 11/19/2024
4.0.0-beta03 8 11/19/2024
4.0.0-beta02 9 11/19/2024
4.0.0-beta01 8 11/19/2024
4.0.0-alpha04 7 11/19/2024
4.0.0-alpha03 7 11/19/2024
4.0.0-alpha02 7 11/19/2024
4.0.0-alpha01 6 11/19/2024
3.20.2 5 11/19/2024
3.20.1 7 11/19/2024
3.20.0 6 11/19/2024
3.20.0-beta01 7 11/19/2024
3.19.0 7 11/19/2024
3.18.0 5 11/19/2024
3.17.0 9 11/19/2024
3.16.0 5 11/19/2024
3.15.0 5 11/19/2024
3.14.0-beta03 7 11/19/2024
3.14.0-beta02 8 11/19/2024
3.14.0-beta01 8 11/19/2024
3.13.1 6 11/19/2024
3.13.0 6 11/19/2024
3.12.0 6 11/19/2024
3.11.1 8 11/19/2024
3.11.0 8 11/19/2024
3.10.0 7 11/19/2024
3.9.0 5 11/19/2024
3.8.0 5 11/19/2024
3.7.1 6 11/19/2024
3.7.0 6 11/19/2024
3.6.0 7 11/19/2024
3.5.0 7 11/19/2024
3.4.0 5 11/19/2024
3.3.0 6 11/19/2024
3.3.0-beta2 8 11/19/2024
3.3.0-beta1 7 11/19/2024
3.2.3 6 11/19/2024
3.2.2 8 11/19/2024
3.2.1 6 11/19/2024
3.2.0 8 11/19/2024
3.1.0 7 11/19/2024
3.0.2 8 11/19/2024
3.0.1 6 11/19/2024
3.0.0 7 11/19/2024
3.0.0-beta05 9 11/19/2024
3.0.0-beta04 10 11/19/2024
3.0.0-beta03 9 11/19/2024
3.0.0-beta02 8 11/19/2024
3.0.0-beta01 8 11/19/2024
3.0.0-alpha9 6 11/19/2024
3.0.0-alpha8 8 11/19/2024
3.0.0-alpha7 6 11/18/2024
3.0.0-alpha6 8 11/19/2024
3.0.0-alpha5 7 11/19/2024
3.0.0-alpha4 5 11/19/2024
3.0.0-alpha1 7 11/19/2024
2.6.2 6 11/19/2024
2.6.1 7 11/19/2024
2.6.0 7 11/19/2024
2.5.0 7 11/19/2024
2.4.0 7 11/19/2024
2.3.0 6 11/19/2024
2.2.1 6 11/19/2024
2.2.0 6 11/19/2024
2.1.2 6 11/19/2024
2.1.1 7 11/19/2024