MathNet.Numerics 3.13.1

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL portable profiles 7, 47, 78, 259 and 328; Android/iOS with Xamarin.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
10
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
6
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
2

BUG: Random: Next(x,x+1) must always return x ~Juri

.NET Framework 3.5

.NET Framework 4.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 8 11/17/2024
5.0.0 7 11/19/2024
5.0.0-beta02 9 11/19/2024
5.0.0-beta01 11 11/19/2024
5.0.0-alpha16 11 11/19/2024
5.0.0-alpha15 8 11/19/2024
5.0.0-alpha14 8 11/19/2024
5.0.0-alpha13 7 11/19/2024
5.0.0-alpha12 5 11/19/2024
5.0.0-alpha11 7 11/19/2024
5.0.0-alpha10 5 11/19/2024
5.0.0-alpha09 8 11/19/2024
5.0.0-alpha08 7 11/19/2024
5.0.0-alpha07 9 11/19/2024
5.0.0-alpha06 7 11/19/2024
5.0.0-alpha05 7 11/19/2024
5.0.0-alpha04 9 11/19/2024
5.0.0-alpha03 8 11/19/2024
5.0.0-alpha02 7 11/19/2024
5.0.0-alpha01 8 11/19/2024
4.15.0 8 11/19/2024
4.14.0 6 11/19/2024
4.13.0 7 11/19/2024
4.12.0 7 11/19/2024
4.11.0 7 11/19/2024
4.10.0 9 11/19/2024
4.9.1 5 11/19/2024
4.9.0 7 11/19/2024
4.8.1 7 11/19/2024
4.8.0 6 11/19/2024
4.8.0-beta02 9 11/19/2024
4.8.0-beta01 9 11/19/2024
4.7.0 7 11/19/2024
4.6.0 6 11/19/2024
4.5.1 6 11/19/2024
4.5.0 6 11/19/2024
4.4.1 6 11/19/2024
4.4.0 7 11/19/2024
4.3.0 6 11/19/2024
4.2.0 8 11/19/2024
4.1.0 7 11/19/2024
4.0.0 6 11/19/2024
4.0.0-beta07 8 11/19/2024
4.0.0-beta06 12 11/19/2024
4.0.0-beta05 9 11/19/2024
4.0.0-beta04 11 11/19/2024
4.0.0-beta03 9 11/19/2024
4.0.0-beta02 10 11/19/2024
4.0.0-beta01 9 11/19/2024
4.0.0-alpha04 7 11/19/2024
4.0.0-alpha03 7 11/19/2024
4.0.0-alpha02 7 11/19/2024
4.0.0-alpha01 6 11/19/2024
3.20.2 6 11/19/2024
3.20.1 8 11/19/2024
3.20.0 6 11/19/2024
3.20.0-beta01 7 11/19/2024
3.19.0 7 11/19/2024
3.18.0 6 11/19/2024
3.17.0 9 11/19/2024
3.16.0 5 11/19/2024
3.15.0 5 11/19/2024
3.14.0-beta03 7 11/19/2024
3.14.0-beta02 9 11/19/2024
3.14.0-beta01 9 11/19/2024
3.13.1 6 11/19/2024
3.13.0 6 11/19/2024
3.12.0 6 11/19/2024
3.11.1 8 11/19/2024
3.11.0 8 11/19/2024
3.10.0 7 11/19/2024
3.9.0 5 11/19/2024
3.8.0 5 11/19/2024
3.7.1 6 11/19/2024
3.7.0 6 11/19/2024
3.6.0 7 11/19/2024
3.5.0 7 11/19/2024
3.4.0 6 11/19/2024
3.3.0 7 11/19/2024
3.3.0-beta2 11 11/19/2024
3.3.0-beta1 8 11/19/2024
3.2.3 6 11/19/2024
3.2.2 8 11/19/2024
3.2.1 7 11/19/2024
3.2.0 8 11/19/2024
3.1.0 7 11/19/2024
3.0.2 9 11/19/2024
3.0.1 6 11/19/2024
3.0.0 7 11/19/2024
3.0.0-beta05 9 11/19/2024
3.0.0-beta04 10 11/19/2024
3.0.0-beta03 10 11/19/2024
3.0.0-beta02 9 11/19/2024
3.0.0-beta01 8 11/19/2024
3.0.0-alpha9 6 11/19/2024
3.0.0-alpha8 8 11/19/2024
3.0.0-alpha7 7 11/18/2024
3.0.0-alpha6 9 11/19/2024
3.0.0-alpha5 7 11/19/2024
3.0.0-alpha4 6 11/19/2024
3.0.0-alpha1 7 11/19/2024
2.6.2 6 11/19/2024
2.6.1 7 11/19/2024
2.6.0 7 11/19/2024
2.5.0 7 11/19/2024
2.4.0 7 11/19/2024
2.3.0 6 11/19/2024
2.2.1 6 11/19/2024
2.2.0 6 11/19/2024
2.1.2 6 11/19/2024
2.1.1 7 11/19/2024