MathNet.Numerics 3.11.0
Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL portable profiles 7, 47, 78, 259 and 328; Android/iOS with Xamarin.
Showing the top 20 packages that depend on MathNet.Numerics.
Packages | Downloads |
---|---|
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
|
5 |
Special Functions: error functions to use static coefficient arrays (perf) ~Joel Sleppy
Integration: Gauss-Legendre Rule (1D, 2D) ~Larz White
Complex: more robust magnitude and division for numbers close to MaxValue or Epsilon ~MaLiN2223
Native Providers: lazy default provider discovery & initialization ~Kuan Bartel
FSharp Package: Quaternion type ~Phil Cleveland
Version | Downloads | Last updated |
---|---|---|
6.0.0-beta1 | 5 | 11/17/2024 |
5.0.0 | 2 | 11/19/2024 |
5.0.0-beta02 | 4 | 11/19/2024 |
5.0.0-beta01 | 4 | 11/19/2024 |
5.0.0-alpha16 | 5 | 11/19/2024 |
5.0.0-alpha15 | 2 | 11/19/2024 |
5.0.0-alpha14 | 3 | 11/19/2024 |
5.0.0-alpha13 | 3 | 11/19/2024 |
5.0.0-alpha12 | 2 | 11/19/2024 |
5.0.0-alpha11 | 2 | 11/19/2024 |
5.0.0-alpha10 | 2 | 11/19/2024 |
5.0.0-alpha09 | 2 | 11/19/2024 |
5.0.0-alpha08 | 2 | 11/19/2024 |
5.0.0-alpha07 | 5 | 11/19/2024 |
5.0.0-alpha06 | 2 | 11/19/2024 |
5.0.0-alpha05 | 2 | 11/19/2024 |
5.0.0-alpha04 | 4 | 11/19/2024 |
5.0.0-alpha03 | 2 | 11/19/2024 |
5.0.0-alpha02 | 2 | 11/19/2024 |
5.0.0-alpha01 | 3 | 11/19/2024 |
4.15.0 | 3 | 11/19/2024 |
4.14.0 | 2 | 11/19/2024 |
4.13.0 | 3 | 11/19/2024 |
4.12.0 | 4 | 11/19/2024 |
4.11.0 | 2 | 11/19/2024 |
4.10.0 | 4 | 11/19/2024 |
4.9.1 | 2 | 11/19/2024 |
4.9.0 | 2 | 11/19/2024 |
4.8.1 | 3 | 11/19/2024 |
4.8.0 | 3 | 11/19/2024 |
4.8.0-beta02 | 4 | 11/19/2024 |
4.8.0-beta01 | 3 | 11/19/2024 |
4.7.0 | 2 | 11/19/2024 |
4.6.0 | 3 | 11/19/2024 |
4.5.1 | 3 | 11/19/2024 |
4.5.0 | 2 | 11/19/2024 |
4.4.1 | 2 | 11/19/2024 |
4.4.0 | 3 | 11/19/2024 |
4.3.0 | 3 | 11/19/2024 |
4.2.0 | 2 | 11/19/2024 |
4.1.0 | 2 | 11/19/2024 |
4.0.0 | 3 | 11/19/2024 |
4.0.0-beta07 | 3 | 11/19/2024 |
4.0.0-beta06 | 3 | 11/19/2024 |
4.0.0-beta05 | 3 | 11/19/2024 |
4.0.0-beta04 | 5 | 11/19/2024 |
4.0.0-beta03 | 3 | 11/19/2024 |
4.0.0-beta02 | 3 | 11/19/2024 |
4.0.0-beta01 | 3 | 11/19/2024 |
4.0.0-alpha04 | 2 | 11/19/2024 |
4.0.0-alpha03 | 3 | 11/19/2024 |
4.0.0-alpha02 | 2 | 11/19/2024 |
4.0.0-alpha01 | 2 | 11/19/2024 |
3.20.2 | 3 | 11/19/2024 |
3.20.1 | 4 | 11/19/2024 |
3.20.0 | 2 | 11/19/2024 |
3.20.0-beta01 | 4 | 11/19/2024 |
3.19.0 | 3 | 11/19/2024 |
3.18.0 | 2 | 11/19/2024 |
3.17.0 | 3 | 11/19/2024 |
3.16.0 | 2 | 11/19/2024 |
3.15.0 | 2 | 11/19/2024 |
3.14.0-beta03 | 3 | 11/19/2024 |
3.14.0-beta02 | 4 | 11/19/2024 |
3.14.0-beta01 | 5 | 11/19/2024 |
3.13.1 | 3 | 11/19/2024 |
3.13.0 | 2 | 11/19/2024 |
3.12.0 | 3 | 11/19/2024 |
3.11.1 | 3 | 11/19/2024 |
3.11.0 | 2 | 11/19/2024 |
3.10.0 | 2 | 11/19/2024 |
3.9.0 | 2 | 11/19/2024 |
3.8.0 | 2 | 11/19/2024 |
3.7.1 | 3 | 11/19/2024 |
3.7.0 | 2 | 11/19/2024 |
3.6.0 | 3 | 11/19/2024 |
3.5.0 | 3 | 11/19/2024 |
3.4.0 | 2 | 11/19/2024 |
3.3.0 | 3 | 11/19/2024 |
3.3.0-beta2 | 4 | 11/19/2024 |
3.3.0-beta1 | 3 | 11/19/2024 |
3.2.3 | 2 | 11/19/2024 |
3.2.2 | 5 | 11/19/2024 |
3.2.1 | 2 | 11/19/2024 |
3.2.0 | 4 | 11/19/2024 |
3.1.0 | 3 | 11/19/2024 |
3.0.2 | 4 | 11/19/2024 |
3.0.1 | 2 | 11/19/2024 |
3.0.0 | 3 | 11/19/2024 |
3.0.0-beta05 | 4 | 11/19/2024 |
3.0.0-beta04 | 5 | 11/19/2024 |
3.0.0-beta03 | 4 | 11/19/2024 |
3.0.0-beta02 | 3 | 11/19/2024 |
3.0.0-beta01 | 4 | 11/19/2024 |
3.0.0-alpha9 | 2 | 11/19/2024 |
3.0.0-alpha8 | 2 | 11/19/2024 |
3.0.0-alpha7 | 2 | 11/18/2024 |
3.0.0-alpha6 | 4 | 11/19/2024 |
3.0.0-alpha5 | 2 | 11/19/2024 |
3.0.0-alpha4 | 2 | 11/19/2024 |
3.0.0-alpha1 | 3 | 11/19/2024 |
2.6.2 | 2 | 11/19/2024 |
2.6.1 | 2 | 11/19/2024 |
2.6.0 | 3 | 11/19/2024 |
2.5.0 | 3 | 11/19/2024 |
2.4.0 | 2 | 11/19/2024 |
2.3.0 | 2 | 11/19/2024 |
2.2.1 | 2 | 11/19/2024 |
2.2.0 | 3 | 11/19/2024 |
2.1.2 | 3 | 11/19/2024 |
2.1.1 | 3 | 11/19/2024 |